
 

 

 

 

 

 
 
 
Offchain Labs ArbOS 40 Nitro 
Security Assessment (Summary Report) 

May 6, 2025 

 

 

 

Prepared for: 

Harry Kalodner, Steven Goldfeder, and Ed Felten 
Offchain Labs 

 

Prepared by: Jaime Iglesias, Simone Monica, and Nicolas Donboly  

 
        Trail of Bits   
        PUBLIC 



Table of Contents 

Table of Contents 1 
Project Summary 2 
Project Targets 3 
Executive Summary 4 
Summary of Findings 5 
Detailed Findings 6 

1. Arbitrum precompiles break EIP-7702 contract delegation behavior due to 
non-empty code 6 
2. Missing deployment of EIP-2935 contract required for Pectra hard fork 
compatibility 8 
3. Misleading comment in StylusParams storage handler could lead to data 
corruption 9 
4. EIP-2935 block hash contract implementation can be optimized 11 
5. Potential error handling issue in Code retrieval after interface change 13 
6. EIP-2935 block hash history update function is not called, breaking historical block 
hash access 14 

A. Vulnerability Categories 16 
B. Code Quality Findings 18 
About Trail of Bits 19 
Notices and Remarks 20 

 

 

 

 
        Trail of Bits 1 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 



Project Summary 

Contact Information 
The following project manager was associated with this project: 

Mary O’Brien, Project Manager 
mary.obrien@trailofbits.com 

The following engineering director was associated with this project: 

Benjamin Samuels, Engineering Director, Blockchain 
benjamin.samuels@trailofbits.com 

The following consultants were associated with this project: 

 Jaime Iglesias, Consultant   Simone Monica, Consultant 
 jaime.iglesias@trailofbits.com  simone.monica@trailofbits.com 
 
 Nicolas Donboly, Consultant 
 nicolas.donboly@trailofbits.com 

 

Project Timeline 
The significant events and milestones of the project are listed below. 

Date Event 

April 7, 2025 Pre-project kickoff call 

April 22, 2025 Delivery of first report draft 

May 6, 2025 Delivery of second report draft  

May 6, 2025  Report readout meeting 

May 6, 2025  Delivery of final summary report 

 

 
        Trail of Bits 2 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 

mailto:mary.obrien@trailofbits.com
mailto:simone.monica@trailofbits.com


Project Targets 

The engagement involved a review and testing of the targets listed below. 

Nitro 
Repository  https://github.com/OffchainLabs/nitro 

Version  df1fe5636bb0ec4ddae6b8a0eddf8e84a91c3491 

 b3dd9797a306636ee106797e16b60310d6d3ccb3 

Type  Golang 

Platform  Arbitrum 

go-ethereum 
Repository  https://github.com/OffchainLabs/go-ethereum 

Version  084f63827520569955a905596878d90d42b734a7 

 2a0b8b6f146f62e609fc240b99a9f65df8f2eace 

Type  Golang 

Platform  Arbitrum 

 

 
        Trail of Bits 3 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 



Executive Summary 

Engagement Overview 
Offchain Labs engaged Trail of Bits to review the security of ArbOS 40, specifically the 
commits df1fe56 and b3dd979 of the Nitro repo and commits 084f638 and 2a0b8b of 
ArbOS’s go-ethereum fork. 

Additionally, we also reviewed Nitro and Arbitrum’s geth fork (PR#444, PR#3129, and 
PR#3132), as well as PR#6 of sys-asm. 

A team of three consultants conducted the review from April 7, 2025, to May 2, 2025, for a 
total of 11 engineer-weeks of effort. With full access to source code and documentation, we 
performed static and dynamic testing of the target, using automated and manual 
processes. 

Observations and Impact 
The security assessment focused on evaluating ArbOS v40, which mainly includes changes 
to support the Pectra Hardfork, merging previous go-ethereum versions into Arbitrum’s 
own fork, and other miscellaneous changes. 

The review’s main focus was on EIP implementations, precompiles, and the state transition 
function, as well as on looking for code changes that could potentially be non-backwards 
compatible or lead to unexpected behavior. Additionally, we reviewed adjacent code (i.e. 
code that is not part of the state transition function or the replay binary)  that also received 
changes. 

We found one high-severity issue related to EIP-2935 block hash updates and five 
informational findings. Most issues relate to EIP implementation divergences between 
Arbitrum and Ethereum. We recommend enhancing the documentation to highlight 
Arbitrum-specific behaviors. 

Recommendations 
We recommend addressing the high-severity EIP-2935 implementation issue prior to the 
ArbOS 40 release. For future protocol upgrades, we suggest developing comprehensive EIP 
compatibility test suites that specifically validate differences between L1 and L2 
implementations. Additionally, we recommend enhancing documentation around 
Arbitrum-specific behaviors. 

Review the items in the Code Quality Recommendation appendix and consider taking 
actions on each one. 

 
        Trail of Bits 4 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 

https://github.com/OffchainLabs/nitro/tree/consensus-v40-rc.1
https://github.com/OffchainLabs/nitro/tree/consensus-v40-rc.2
https://github.com/OffchainLabs/go-ethereum/compare/consensus-v32...consensus-v40-rc.1
https://github.com/OffchainLabs/go-ethereum/tree/2a0b8b6f146f62e609fc240b99a9f65df8f2eace
https://github.com/OffchainLabs/go-ethereum/pull/444
https://github.com/OffchainLabs/nitro/pull/3129
https://github.com/OffchainLabs/nitro/pull/3132
https://github.com/OffchainLabs/sys-asm/pull/6
https://eips.ethereum.org/EIPS/eip-7600


Summary of Findings 

The table below summarizes the findings of the review, including details on type and 
severity. 

ID Title Type Severity 

1 Arbitrum precompiles break EIP-7702 contract 
delegation behavior due to non-empty code  

Undefined 
Behavior 

Informational 

2 Missing deployment of EIP-2935 contract required 
for Pectra hard fork compatibility 

Configuration Informational 

3 Misleading comment in StylusParams storage 
handler could lead to data corruption 

Documentati
on 

Informational 

4 EIP-2935 block hash contract implementation can be 
optimized 

Configuration Informational 

5 Potential error handling issue in Code retrieval after 
interface change 

Error 
Reporting 

Informational 

6 EIP-2935 block hash history update function is not 
called, breaking historical block hash access 

Configuration High 

 

 

 
        Trail of Bits 5 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 



Detailed Findings 

1. Arbitrum precompiles break EIP-7702 contract delegation behavior due to 
non-empty code  

Severity: Informational Difficulty: Low 

Type: Undefined Behavior Finding ID: TOB-ARBOS40-1  

Target: go-ethereum/core/vm/evm.go 

 
Description 
EIP-7702 specifies that when a contract delegation points to a precompile address, the call 
should succeed without execution: 

“In case a delegation designator points to a precompile address, retrieved code is 
considered empty and CALL, CALLCODE, STATICCALL, DELEGATECALL instructions 
targeting this account will execute empty code, i.e. succeed with no execution given 
enough gas.” 

However, Arbitrum’s implementation does not follow this behavior because its precompiles 
contain 0xFE (INVALID opcode) instead of empty code. 

for addr, version := range PrecompileMinArbOSVersions { 
 if version == nextArbosVersion { 
  stateDB.SetCode(addr, []byte{byte(vm.INVALID)}) 
 } 
} 

Figure 1.1: Snippet of the UpgradeArbosVersion function 
(arbos/arbosState/arbosstate.go#L358-L362) 

When a contract delegates to a precompile, the resolveCode function returns this 
non-empty code. 

if target, ok := types.ParseDelegation(code); ok { 
 // Note we only follow one level of delegation. 
 return evm.StateDB.GetCode(target) 
} 

Figure 1.2: Snippet of the resolveCode function (core/vm/evm.go#L625-L628) 

 
        Trail of Bits 6 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 

https://github.com/OffchainLabs/nitro/blob/df1fe5636bb0ec4ddae6b8a0eddf8e84a91c3491/arbos/arbosState/arbosstate.go#L358-L362
https://github.com/OffchainLabs/go-ethereum/blob/084f63827520569955a905596878d90d42b734a7/core/vm/evm.go#L625-L628


This causes the EVM interpreter to attempt execution of the INVALID opcode rather than 
treating it as a successful no-op operation, as required by the EIP. 

Recommendations 
Short term, implement the behavior defined in EIP-7702 when delegating to a precompile, 
even for Arbitrum precompiles, or accurately document the different behavior. 

Long-term, when implementing EIPs, carefully evaluate how Arbitrum’s distinct behavior 
compared to Ethereum may impact these implementations. 

 

 
        Trail of Bits 7 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 



 

2. Missing deployment of EIP-2935 contract required for Pectra hard fork 
compatibility 

Severity: Informational Difficulty: Low 

Type: Configuration Finding ID: TOB-ARBOS40-2  

Target: arbos/* 

 
Description 
The contract required by EIP-2935 (the block hash history contract) has not been deployed. 
This contract is a necessary component for full Pectra compatibility, as it provides access to 
historical block hashes beyond the standard 256-block window. Without this deployment, 
Arbitrum will not fully support the historical block hash functionality introduced in the 
Pectra hard fork. 

Recommendations 
Short term, deploy the EIP-2935 contract before upgrading to ArbOS 40 to ensure full 
compatibility with the Pectra hard fork features. 

Long term, establish a pre-upgrade checklist that verifies all required contract deployments 
and configurations for each Ethereum protocol upgrade, including validation of all 
dependent EIPs to ensure complete compatibility with Ethereum's protocol evolution. 

Notes 
This issue was addressed by PR#3129.  

 
        Trail of Bits 8 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 

https://eips.ethereum.org/EIPS/eip-2935
https://github.com/OffchainLabs/nitro/pull/3132


 

3. Misleading comment in StylusParams storage handler could lead to data 
corruption 

Severity: Informational Difficulty: Low 

Type: Documentation Finding ID: TOB-ARBOS40-3 

Target: arbos/programs/params.go 

 
Description 
The comment “order matters!” in the Params and Save functions does not immediately 
convey what it is referring to. By simply examining the code that follows the comment in 
the Params function, one may assume that it refers to the order of the members of the 
StylusParams struct; however, it actually refers to the order in which the take closure is 
used. 

In this case, the closure reads encoded values from storage. This means that it is of the 
utmost importance that the values are consistently read in the same order across code 
updates; otherwise, a different result will be returned. 

Because the comment is not immediately clear, a developer could inadvertently change the 
order in which the storage is read and written to, potentially causing data corruption on 
writes or incorrect reads. 

// order matters! 
stylusParams := &StylusParams{ 
 backingStorage:   sto, 
 arbosVersion:     p.ArbosVersion, 
 Version:          am.BytesToUint16(take(2)), 
 InkPrice:         am.BytesToUint24(take(3)), 
 MaxStackDepth:    am.BytesToUint32(take(4)), 
 FreePages:        am.BytesToUint16(take(2)), 
 PageGas:          am.BytesToUint16(take(2)), 
 PageRamp:         initialPageRamp, 
 PageLimit:        am.BytesToUint16(take(2)), 
 MinInitGas:       am.BytesToUint8(take(1)), 
 MinCachedInitGas: am.BytesToUint8(take(1)), 
 InitCostScalar:   am.BytesToUint8(take(1)), 
 CachedCostScalar: am.BytesToUint8(take(1)), 
 ExpiryDays:       am.BytesToUint16(take(2)), 
 KeepaliveDays:    am.BytesToUint16(take(2)), 
 BlockCacheSize:   am.BytesToUint16(take(2)), 
} 

 
        Trail of Bits 9 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 



Figure 3.1: Misleading comment in the Params function in params.go 
(audit-arbitrum-nitro/arbos/programs/params.go#84–102) 

Recommendations 
Short term, rewrite the comments  in the Params and Save functions to clarify what they 
are referring to. 

Long term, ensure that all critical comments throughout the codebase are explicit enough 
for anyone to understand them.  

 
        Trail of Bits 10 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 

https://github.com/OffchainLabs/nitro/blob/df1fe5636bb0ec4ddae6b8a0eddf8e84a91c3491/arbos/programs/params.go#L86-L104


 

4. EIP-2935 block hash contract implementation can be optimized 

Severity: Informational Difficulty: Low 

Type: Configuration Finding ID: TOB-ARBOS40-4 

Target: src/execution_hash/main.eas 

 
Description 
The EIP-2935 block hash history contract implementation unnecessarily calls the expensive 
%arb_block_num macro twice, increasing gas costs.  

This implementation differs from the standard Ethereum version because it uses an 
ArbSys call to retrieve the block number rather than the native blocknumber opcode, 
making each call more expensive as it requires an additional contract call. This change is 
necessary because the blocknumber opcode does not behave the same as in Ethereum, 
so the contract needs to be adjusted to provide the expected outcome. 

;; Check if input is requesting a block hash greater than current block number 
;; minus 1. 
push 0            ;; [0] 
calldataload      ;; [input] 
push 1            ;; [1, input] 
%arb_block_num    ;; [number, 1, input] 
sub               ;; [number-1, input] 
dup2              ;; [input, number-1, input] 
gt                ;; [input > number-1, input] 
jumpi @throw      ;; [input] 
 
;; Check if the input is requesting a block hash before the earliest available 
;; hash currently. Since we've verified that input <= number - 1, we know 
;; there will be no overflow during the subtraction of number - input. 
push BUFLEN       ;; [buflen, input] 
dup2              ;; [input, buflen, input] 
%arb_block_num    ;; [number, input, buflen, input] 
sub               ;; [number - input, buflen, input] 
gt                ;; [number - input > buflen, input] 
jumpi @throw      ;; [input] 

Figure 4.1: %arb_block_num macro is used twice 
(sys-asm/src/execution_hash/main.eas#88–107) 

 

 
        Trail of Bits 11 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 

https://eips.ethereum.org/EIPS/eip-2935
https://github.com/OffchainLabs/sys-asm/blob/1181f7540070a025424ff702c29572ba4f1050c0/src/execution_hash/main.eas#L88-L107


Recommendations 
Short term, optimize the code by storing the result of the first %arb_block_num call on the 
stack using dup/swap operations and reusing it for the second occurrence. 

If the code is indeed changed, then update the relevant Nitro bytecode for the system 
contract. 

Notes 
This issue was addressed by PR#6. Note that the bytecode still needs to be updated in 
Nitro.  

 
        Trail of Bits 12 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 

https://github.com/OffchainLabs/sys-asm/pull/6


 

5. Potential error handling issue in Code retrieval after interface change 

Severity: Informational Difficulty: High 

Type: Error Reporting Finding ID: TOB-ARBOS40-5 

Target: arbos/programs/programs.go 

 
Description 
The transition in this commit from using ContractCodeWithPrefix to Code in the 
SetProgramCached function introduces a potential error handling issue. The new Code 
function does not return an error for empty code, unlike the previous implementation, 
which could lead to silent failures when caching programs. 

// Not passing in an address is supported pre-Verkle, as in Blockchain's 
ContractCodeWithPrefix method. 
code, err := db.Reader().Code(common.Address{}, codeHash) 
if err != nil { 
 return err 
} 

Figure 5.1: The new Code function does not return an error for empty code  
(nitro/arbos/programs/programs.go#452–455) 

The new interface was introduced by go-ethereum in PR#30816, which highlights the code 
semantics change: 

“Notably, this interface modifies the function’s semantics. If the contract code is not 
found, no error will be returned. An error should only be returned in the event of an 
unexpected issue, primarily for future implementations.” 

Recommendations 
Short term, add a check for empty code after calling db.Reader().Code and return an 
error if no code is found. 

Long term, carefully review go-ethereum function semantic changes for potential impacts 
on Arbitrum’s implementation when integrating go-ethereum changes into the Arbitrum 
fork.  

 
        Trail of Bits 13 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 

https://github.com/OffchainLabs/nitro/commit/c8733f49d13931fba542b51d67862125340dd1a2
https://github.com/OffchainLabs/nitro/blob/df1fe5636bb0ec4ddae6b8a0eddf8e84a91c3491/arbos/programs/programs.go#L452-L455
https://github.com/ethereum/go-ethereum/pull/30816


 

6. EIP-2935 block hash history update function is not called, breaking 
historical block hash access 

Severity: High Difficulty: Low 

Type: Configuration Finding ID: TOB-ARBOS40-6 

Target: arbos/state_processor.go 

 
Description 
The Arbitrum implementation fails to call the ProcessParentBlockHash function 
required by EIP-2935 (Block Hash History).  

The function is defined in go-ethereum but never called in ArbOS. This is because in geth, it 
is called in the Process function that processes new blocks (figure 6.1), while ArbOS uses 
its own ProduceBlock function. This prevents the block hash history contract from being 
updated with each new block. All calls to retrieve historical block hashes will fail after the 
Pectra hard fork. 

if p.config.IsPrague(block.Number(), block.Time(), context.ArbOSVersion) || 
p.config.IsVerkle(block.Number(), block.Time()) { 
 ProcessParentBlockHash(block.ParentHash(), evm) 
} 

Figure 6.1: ProcessParentBlockHash is called by the Process function in Arbitrum’s Geth 
fork, but is not in ArbOS (go-ethereum/core/state_processor.go#88–90) 

Exploit Scenario 
A cross-chain bridge contract relies on historical block hash validation beyond the standard 
256-block window. After the Pectra hard fork, the bridge tries to access an older block hash 
using the EIP-2935 mechanism, but since the history contract has not been updated, the 
call returns incorrect data. 

Recommendations 
Short term, modify the ApplyInternalTxUpdate function to call 
ProcessParentBlockHash when handling the InternalTxStartBlockMethodID case 
to ensure that the history contract is updated with each new block. 

Long term, enhance integration testing when merging geth upstream changes to verify that 
the system works as expected, and expand tests to validate new behavior, such as 
validating that the EIP-2935 functionality works as intended. 

 
        Trail of Bits 14 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 

https://github.com/OffchainLabs/go-ethereum/blob/084f63827520569955a905596878d90d42b734a7/core/state_processor.go#L88-L90


Notes 
The Offchain Labs team also identified the same issue during their internal review, which 
was conducted simultaneously with ours. 

This issue was addressed by Nitro and Arbitrum’s geth fork PR#444, PR#3129, and 
PR#3132. 

 

 
        Trail of Bits 15 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 

https://github.com/OffchainLabs/go-ethereum/pull/444
https://github.com/OffchainLabs/nitro/pull/3129
https://github.com/OffchainLabs/nitro/pull/3132


A. Vulnerability Categories 

The following tables describe the vulnerability categories, severity levels, and difficulty 
levels used in this document. 

Vulnerability Categories 

Category Description 

Access Controls Insufficient authorization or assessment of rights 

Auditing and Logging Insufficient auditing of actions or logging of problems 

Authentication Improper identification of users 

Configuration Misconfigured servers, devices, or software components 

Cryptography A breach of system confidentiality or integrity 

Data Exposure Exposure of sensitive information 

Data Validation Improper reliance on the structure or values of data 

Denial of Service A system failure with an availability impact 

Error Reporting Insecure or insufficient reporting of error conditions 

Patching Use of an outdated software package or library 

Session Management Improper identification of authenticated users 

Testing Insufficient test methodology or test coverage 

Timing Race conditions or other order-of-operations flaws 

Undefined Behavior Undefined behavior triggered within the system 

 

 
        Trail of Bits 16 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 



 

Severity Levels 

Severity Description 

Informational The issue does not pose an immediate risk but is relevant to security best 
practices. 

Undetermined The extent of the risk was not determined during this engagement. 

Low The risk is small or is not one the client has indicated is important. 

Medium User information is at risk; exploitation could pose reputational, legal, or 
moderate financial risks. 

High The flaw could affect numerous users and have serious reputational, legal, 
or financial implications. 

 

Difficulty Levels 

Difficulty Description 

Undetermined The difficulty of exploitation was not determined during this engagement. 

Low The flaw is well known; public tools for its exploitation exist or can be 
scripted. 

Medium An attacker must write an exploit or will need in-depth knowledge of the 
system. 

High An attacker must have privileged access to the system, may need to know 
complex technical details, or must discover other weaknesses to exploit this 
issue. 

 

 
        Trail of Bits 17 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 



B. Code Quality Findings 

The following findings are not associated with any specific vulnerabilities. However, fixing 
them will enhance code readability and may prevent the introduction of vulnerabilities in 
the future. 

● The maxWasmSize parameter (type uint32) is cast to int in 
getWasmFromContractCode in the following location. This issue could cause an 
integer overflow on 32-bit systems where int is 32 bits. Values greater than 231-1 
would become negative, potentially causing unexpected behavior when passed to 
DecompressWithDictionary. While Arbitrum Nitro likely runs only on 64-bit 
systems, this issue could cause problems if the code were ever to run on 32-bit 
architectures. 

○ arbos/programs/programs.go#L317 

● The Reorg function is not documented. We recommend documenting this 
function, particularly how it is meant to be used and why it supports reorging past a 
finalized block. 

● There is a typo in the error message of the Compress function. The message 
should say failed compression instead of failed decompression. 

○ arbcompress/native.go#L45  

 
        Trail of Bits 18 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 

https://github.com/OffchainLabs/nitro/blob/df1fe5636bb0ec4ddae6b8a0eddf8e84a91c3491/arbos/programs/programs.go#L317
https://github.com/OffchainLabs/nitro/blob/b3dd9797a306636ee106797e16b60310d6d3ccb3/execution/gethexec/executionengine.go#L280
https://github.com/OffchainLabs/nitro/blob/b3dd9797a306636ee106797e16b60310d6d3ccb3/arbcompress/native.go#L45


About Trail of Bits 

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security 
assessment and advisory services to some of the world’s most targeted organizations. We 
combine high- end security research with a real -world attacker mentality to reduce risk and 
fortify code. With 100+ employees around the globe, we’ve helped secure critical software 
elements that support billions of end users, including Kubernetes and the Linux kernel. 

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications, 
with links to papers, presentations, public audit reports, and podcast appearances. 

In recent years, Trail of Bits consultants have showcased cutting-edge research through 
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec, 
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon. 

We specialize in software testing and code review projects, supporting client organizations 
in the technology, defense, and finance industries, as well as government entities. Notable 
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom. 

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable 
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0, 
MakerDAO, Matic, Uniswap, Web3, and Zcash. 

To keep up to date with our latest news and announcements, please follow @trailofbits on 
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us 
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at 
info@trailofbits.com. 

Trail of Bits, Inc. 
228 Park Ave S #80688 
New York, NY 10003 
https://www.trailofbits.com 
info@trailofbits.com 

 

 
        Trail of Bits 19 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com


Notices and Remarks 

Copyright and Distribution 
© 2025 by Trail of Bits, Inc. 

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this 
report in the United Kingdom. 

Trail of Bits considers this report public information; it is licensed to Offchain Labs under 
the terms of the project statement of work and has been made public at Offchain Labs’s 
request. Material within this report may not be reproduced or distributed in part or in 
whole without Trail of Bits' express written permission. 

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page. 
Reports accessed through sources other than that page may have been modified and 
should not be considered authentic. 

Test Coverage Disclaimer 
All activities undertaken by Trail of Bits in association with this project were performed in 
accordance with a statement of work and agreed upon project plan. 

Security assessment projects are time-boxed and often reliant on information that may be 
provided by a client, its affiliates, or its partners. As a result, the findings documented in 
this report should not be considered a comprehensive list of security issues, flaws, or 
defects in the target system or codebase. 

Trail of Bits uses automated testing techniques to rapidly test the controls and security 
properties of software. These techniques augment our manual security review work, but 
each has its limitations: for example, a tool may not generate a random edge case that 
violates a property or may not fully complete its analysis during the allotted time. Their use 
is also limited by the time and resource constraints of a project. 

 
        Trail of Bits 20 Offchain Labs ArbOS 40 Nitro 
        PUBLIC  Security Assessment 

https://github.com/trailofbits/publications

	 
	 
	 
	Offchain Labs ArbOS 40 Nitro 
	Table of Contents 
	 
	 
	 
	Project Summary 
	Project Targets 
	Executive Summary 
	Summary of Findings 
	Detailed Findings 
	1. Arbitrum precompiles break EIP-7702 contract delegation behavior due to non-empty code  
	 
	2. Missing deployment of EIP-2935 contract required for Pectra hard fork compatibility 
	 
	3. Misleading comment in StylusParams storage handler could lead to data corruption 
	 
	4. EIP-2935 block hash contract implementation can be optimized 
	 
	5. Potential error handling issue in Code retrieval after interface change 
	 
	6. EIP-2935 block hash history update function is not called, breaking historical block hash access 
	 

	 
	A. Vulnerability Categories 
	 
	B. Code Quality Findings 
	About Trail of Bits 
	 
	Notices and Remarks 

